Acoustics – Size and Modes of the Small Room for Home Theatre

S. Jerin Winne¹, Durai Jayaprakash²

¹Asst. Professor, Sathyabama University, Chennai, India ²Composer, IMI mobiles, Hyderabad, India

Abstract: The size, shape and finishes of the small home theatre room decide the acoustic quality of the home theatre room. This paper analysis the various options for the design of home theatre room for musical instruments and for multi-purpose use. The determination of home theatre room sizes, proportions, shapes and finishes with their possible impact on the sound quality are discussed and also standing waves, room modes and even distribution of the modes in home theatre rooms are also addressed. At the design phase this would determine the final cost, floor areas utilized. In the home theatre acoustic the size, shape and modes are the major "elements". The frequency response and the reverberation time are the important part of entire system. If want to build a home theatre, will be starting with the actual room itself. The size and the shape of the room provide a significant impact on the performance of the home theatre and how to makes the room better sound quality for the home theatre are discussed.

Keywords: Acoustic, Room Size and Shape, Room Modes, Modal Resonance.

I. INTRODUCTION

The most development of human and culture are speech and sound. Sound is the energy that transferred from the source by developmental sound wave through some medium. Almost in all the fields the acoustics is spread in our society viz. music, medicine, industrial production, etc...

The acoustic helps, to do noise problem analysis, to do industrial noise control, to make a sound proof room, and to understand the sound absorbing and reflection. The sound heard in a listening room is obtained by the combination of the electronics system and acoustics of the listening room. Specifically, the modal produced by the room be so significant they dominate the sound. So concentrate on the room design to minimize the relics at the low frequencies. Modes in small rooms frequently direct to sustain sound decays and uneven frequency responses – regularly referred to as pervading character (coloration). Problem arises at the low frequencies due to quite low modal density. Here we will be concerned ourselves with the first problem of choosing the good room dimensions.

II. ROOM ANALYSIS

A. Room Analysis

The shape and size of the studio room is a basic factor when designing a studio to attain a suitable acoustic environment with a standard speed of sound 343m/s. Because Shape and size manipulate the resonances a room naturally produces. Although rooms with parallel walls, floors and ceilings are preferred for studio rooms, to maximize the use of the available space the rooms in studio facilities are normally rectangular in size. Where rectangular rooms with parallel walls, floors and ceilings are preferred to rectangular in size. Where rectangular rooms with parallel walls, floors and ceilings are normally rectangular in size.

To reduce the amount of healing wanted in the studio to clean sound can be reduced by building an acoustically suitable room.

Room Details: Volume $- 17 \text{ m}^3$, Surface $- 40 \text{ m}^2$, RT 60 - .7 sec

B. Figures, Graphs and Tables

L	ength	1	Width	t	Height	
Mode	Frequency	Mode	Frequency	Mode	Frequency	¢.
100	56.2295	010	66.2162	001	80,1401	
200	112.459	020	132.432	002	160.280	
300	168.688	030	198.648	0 0 З	240.420	
400	224.918	040	264,864	004	320.560	
500	281.147	050	331.081	005	400.700	
600	337.377	060	397.297	006	480.841	
700	393.606	070	463.513	007	560.981	
800	449.836	080	529.729	008	641.121	
900	506.065	090	595.945	009	721.261	

Table 1: Axial Mode & Frequency

Table 2: Tangential mode & Frequency

ModeFrequencyModeFrequencyModeFrequency1 1 086.86971 0 197.89890 1 1103.9561 2 0143.8751 0 2169.8570 1 2173.4191 3 0206.4531 0 3246.9080 1 3249.3721 4 0270.7671 0 4325.4540 1 4327.3282 1 0130.5052 0 1138.0920 2 1154.7922 2 0173.7392 0 2195.7970 2 2207.9132 3 0228.2722 0 3265.4220 2 3274.4822 4 0287.7502 0 439.7140 2 4346.8393 1 0181.2193 0 1186.7570 3 1214.2043 2 0214.4623 0 2232.6920 3 3311.8703 4 0314.0213 0 4262.2360 3 4377.1214 1 0234.4624 0 1238.7680 4 1276.7234 1 0261.0104 0 2276.1840 4 2309.5854 3 0300.0824 0 3329.2260 4 3357.7084 4 0347.4784 0 4391.5950 4 4158.27	Lengt	h & Width	Lengt	n & Height	Width	8. Height	
111086.8697101197.89890111103.956120143.875102169.857012173.419130206.453103246.908013249.372140270.767104325.454014327.328210130.505201138.092021154.792220173.739202195.797022207.913230282.727203265.422023274.482240287.750204397.714346.339310181.219300.1186.757033214.204320214.462300.2232.692033311.870340314.021304362.266034377.121410234.462401238.768041276.723420261.010402276.184042309.58543030.082403329.266043357.708440347.478404391.595044415.827	Mode	Frequency	Mode	Frequency	Mode	Frequency	
1 2 0143.8751 0 2169.8570 1 2173.4191 3 0206.4531 0 3246.9080 1 3249.3721 4 0270.7671 0 4325.4540 1 4327.3282 1 0130.5052 0 1138.0920 2 1154.7922 2 0173.7392 0 2195.7970 2 2207.9132 3 0228.2722 0 3265.4220 2 3274.4822 4 0287.7502 0 4339.7140 2 4346.8393 1 0181.2193 0 1186.7570 3 1214.2043 2 02 14.4623 0 2232.6920 3 2255.2473 3 0260.6093 0 4262.2360 3 4311.8703 4 0314.0213 0 4362.2360 4 1276.7234 1 0234.4624 0 1238.7680 4 1276.7234 2 0261.0104 0 2276.1840 4 2309.5854 3 0300.0824 0 3329.2260 4 3357.7084 4 0347.4784 0 4391.5950 4 4415.827	110	86.8697	101	97.8989	011	103.956	
1 3 0206.4531 0 3246.9080 1 3249.3721 4 0270.7671 0 4325.4540 1 4327.3282 1 0130.5052 0 1138.0920 2 1154.7922 2 0173.7392 0 2195.7970 2 2207.9132 3 0228.2722 0 3265.4220 2 3274.4822 4 0287.7502 0 439.7140 2 4346.8393 1 0181.2193 0 1186.7570 3 1214.2043 2 0214.4623 0 2232.6920 3 2255.2473 3 0260.6093 0 3293.6960 3 3311.8703 4 0314.0213 0 4362.2360 4 3377.1214 1 0234.4624 0 1238.7680 4 1276.7234 3 0300.0824 0 3329.2260 4 3357.7084 4 0347.4784 0 4391.5950 4 4415.827	120	143.875	102	169.857	012	173. <mark>4</mark> 19	
1 4 0270.7671 0 4325.4540 1 4327.3282 1 0130.5052 0 1138.0920 2 1154.7922 2 0173.7392 0 2195.7970 2 2207.9132 3 0228.2722 0 3265.4220 2 3274.4822 4 0287.7502 0 439.7140 2 4346.8393 1 0181.2193 0 1186.7570 3 1214.2043 2 0214.4623 0 2232.6920 3 2255.2473 3 0260.6093 0 3293.6960 3 3311.8703 4 0314.0213 0 4362.2360 4 1377.1214 1 0234.4624 0 1238.7680 4 2309.5854 3 0300.0824 0 3329.2260 4 3357.7084 4 0347.4784 0 4391.5950 4 4415.827	130	206.453	103	246.908	013	249.372	
210 130.505 201 138.092 021 154.792 220 173.739 202 195.797 022 207.913 230 228.272 203 265.422 023 274.482 240 287.750 204 39.714 024 346.839 310 181.219 301 186.757 031 214.204 320 214.462 302 232.692 032 255.247 330 260.609 303 293.696 033 311.870 340 314.021 304 362.236 034 377.121 410 234.462 401 238.768 041 276.723 420 261.010 402 276.184 042 309.585 430 300.082 403 329.226 043 357.708 440 347.478 404 391.595 044 415.827	140	270.767	104	325.454	014	327.328	
2 2 0173.7392 0 2195.7970 2 2207.9132 3 0228.2722 0 3265.4220 2 3274.4822 4 0287.7502 0 4339.7140 2 4346.8393 1 0181.2193 0 1186.7570 3 1214.2043 2 0214.4623 0 2232.6920 3 2255.2473 3 0260.6093 0 3293.6960 3 3311.8703 4 0314.0213 0 4362.2360 3 4377.1214 1 0234.4624 0 1238.7680 4 1276.7234 2 0261.0104 0 2276.1840 4 2309.5854 3 0300.0824 0 3329.2260 4 4415.827	210	130,505	201	138.092	021	154.792	
2 3 0228.2722 0 3265.4220 2 3274.4822 4 0287.7502 0 4339.7140 2 4346.8393 1 0181.2193 0 1186.7570 3 1214.2043 2 0214.4623 0 2232.6920 3 2255.2473 3 0260.6093 0 3293.6960 3 3311.8703 4 0314.0213 0 4362.2360 3 4377.1214 1 0234.4624 0 1238.7680 4 1276.7234 2 0261.0104 0 2276.1840 4 2309.5854 3 0300.0824 0 3329.2260 4 3357.7084 4 0347.4784 0 4391.5950 4 4415.827	220	173.739	202	195.797	022	207.913	
2 4 0287.7502 0 4339.7140 2 4346.8393 1 0181.2193 0 1186.7570 3 1214.2043 2 0214.4623 0 2232.6920 3 2255.2473 3 0260.6093 0 3293.6960 3 3311.8703 4 0314.0213 0 4362.2360 3 4377.1214 1 0234.4624 0 1238.7680 4 1276.7234 2 0261.0104 0 2276.1840 4 2309.5854 3 0300.0824 0 3329.2260 4 3357.7084 4 0347.4784 0 4391.5950 4 4415.827	230	228.272	203	265.422	023	274.482	
310181.219301186.757031214.204320214.462302232.692032255.247330260.609303293.696033311.870340314.021304362.236034377.121410234.462401238.768041276.723420261.010402276.184042309.585430300.082403329.226043357.708440347.478404391.595044415.827	240	287.750	204	339.714	024	346.839	
3 2 0 214.462 3 0 2 232.692 0 3 2 255.247 3 3 0 260.609 3 0 3 293.696 0 3 3 311.870 3 4 0 314.021 3 0 4 362.236 0 3 4 377.121 4 1 0 234.462 4 0 1 238.768 0 4 1 276.723 4 2 0 261.010 4 0 2 276.184 0 4 2 309.585 4 3 0 300.082 4 0 3 329.226 0 4 3 357.708 4 4 0 347.478 4 0 4 391.595 0 4 4 415.827	310	181.219	301	186.757	031	214.204	
330 260.609 303 293.696 033 311.870 340 314.021 304 362.236 034 377.121 410 234.462 401 238.768 041 276.723 420 261.010 402 276.184 042 309.585 430 300.082 403 329.226 043 357.708 440 347.478 404 391.595 044 415.827	320	214.462	302	232.692	032	255.247	
3 4 0 314.021 3 0 4 362.236 0 3 4 377.121 4 1 0 234.462 4 0 1 238.768 0 4 1 276.723 4 2 0 261.010 4 0 2 276.184 0 4 2 309.585 4 3 0 300.082 4 0 3 329.226 0 4 3 357.708 4 4 0 347.478 4 0 4 391.595 0 4 4 415.827	330	260.609	зоз	293.696	озз	311.870	
4 1 0234.4624 0 1238.7680 4 1276.7234 2 0261.0104 0 2276.1840 4 2309.5854 3 0300.0824 0 3329.2260 4 3357.7084 4 0347.4784 0 4391.5950 4 4415.827	340	314.021	304	362.236	034	377.121	
4 2 0 261.010 4 0 2 276.184 0 4 2 309.585 4 3 0 300.082 4 0 3 329.226 0 4 3 357.708 4 4 0 347.478 4 0 4 391.595 0 4 4 415.827	410	234. <mark>4</mark> 62	401	238.768	041	276.723	
4 3 0 300.082 4 0 3 329.226 0 4 3 357.708 4 4 0 347.478 4 0 4 391.595 0 4 4 415.827	420	261.010	402	276.184	042	309.585	
4 4 0 347.478 4 0 4 391.595 0 4 4 415.827	430	300.082	4 O 3	329.226	043	357.708	
	440	347,478	404	391.595	044	415.827	

Table 3: Oblique mode & Frequency

Mode	Frequency	Mode	Frequency	Mode	Frequency	Mode	Frequency
111	118.189	112	182.307	121	164.689	211	153.147
222	236	221	191.331	212	206.691	122	215.383

International Journal of Engineering Research and Reviews ISSN 2348-697X (Online) Vol. 3, Issue 1, pp: (21-25), Month: January - March 2015, Available at: <u>www.researchpublish.com</u>

Relative mod strength Vs Frequency (Hz) Fig.1. Room mode for 17 m3 room (Ratio 1.3:1.4:1.5)

Modes in Ascending Frequency Fig.2. First 50 Modes (Frequency (Hz) Vs Modes in ascending frequency)

Fig.3. Reflectivity of each mode

Research Publish Journals

Fig.4. Mode spacing

C. Results

From the Fig 2 And the table 1 understood that the initial modal resonance happens at the frequency 56.3 Hz where the distance between the two borders is equal to half a wavelength. The first modal resonance at 56.3 Hz takes place for 10 ft long and next resonances takes place at multiples of this frequency.

From the mode spacing fig 4 identified that the mode spacing of low frequency are good enough but also not often spaced this leads to bad sound quality. The peak response error are identified at the mid range frequencies 132.48, 160.87, 198.73, 241.31, 321.75, 402.18 Hz. Observed that there are 79890 standing waves between 0 Hz and 500 Hz. The Fig 3 shows the results of reflectivity with 2" mineral wool provided, in the walls and ceiling, for the effective reflectivity 30 % coverage is essential. Average wall absorption of 30 % is estimated, So that the reverberation time will be reduced to .23 m/s.

III. CONCLUSION

Where rectangular room is proposed with the ratio of 1.3: 1.4: 1.5 (by R. Walker, 1996) [3]

Room if:

1.1*(W/H) < (L/H) < 4.5*(W/H)-4

1.3 < 1.4 < 1.5

The room modes and modes distribution where checked. Whatsoever the shape and size (10*8.5*7 ft) of the room, in the low frequency range where modes are sparsely spaced in frequency, directed to a poor sound quality.

In particular, this is the extremely extended sound decay of modes that make sound sustain and clear. By damping (adding absorption materials to) the modes this problem can be solved. This is best if the room has definite dimension and this helps in minimize the modal problems .So that the treat of the modes will be done easier (and cheaper).

Normally in rectangular room the peak frequency response error created by interference of naturally occurring axial standing waves are reduced by employing an acoustical bass absorber in the balanced room. The type of instrument and the loudness of the instrument are to be measured for the design of the small home theatre room. The wall insulation properties to be determined based on the instrument loudness and target background noise.

International Journal of Engineering Research and Reviews ISSN 2348-697X (Online)

Vol. 3, Issue 1, pp: (21-25), Month: January - March 2015, Available at: www.researchpublish.com

ACKNOWLEDGEMENT

I am using this opportunity to express my gratitude to everyone who supported me throughout the course of my career.

REFERENCES

- [1] Loudspeaker and Headphone Handbook" 2nd Edition, Edited by John Borwick, Focus Press, ISBN 0-240-51371-1
- [2] T J Cox and P D'Antonio. Room Optimizer: A Computer Program to Optimize the Placement of Listener, Loudspeakers, Acoustical Surface Treatment, and Room Dimensions in Critical Listening Rooms", 103rd Convention of the Audio Engineering Society, Preprint 4555, Paper H-6, New York (September 1997).
- [3] Walker, "Optimum dimension ratios for small rooms", Audio Eng. Soc. preprint 4191 (1996)
- [4] Blankenship J., Fitzgerald R.B. & Lane R.N. (1955), 'Comparison of Objective and Subjective Observations on Music Rooms' J. Acoust. Soc. Am., Vol.27, p774 – 780.
- [5] Bonello O.J. (1981), "A New Criterion for the Distribution of Room Normal Modes" J.Audio Eng. Soc., Vol.29, p579 606.